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Introduction

The intestinal microbiota can be defined as the dynamic collection of 
microorganisms within the gastrointestinal (GI) tract and the system of in-
teractions these organisms have with each other and with the host cells. 
Molecular tools have allowed us to characterize the intestinal microbiota 
of dogs and cats in more detail. Comparative analyses of the bacterial 16S 
rRNA gene have provided vast amounts of phylogenetic data from both 
healthy and diseased animals (Suchodolski et al., 2008a; Handl et al., 2011). 
More recent functional approaches including metagenomics and metabolo-
mics have begun to relate phylogenetic information to physiologic function 
(Swanson et al., 2011; Deusch et al., 2014). The intestinal microbiota is a 
dynamic system and the composition varies within an individual (i.e., differ-
ent locations of the GI tract, luminal vs. mucosa-adherent, or different time 
points; Ritchie et al., 2008; Suchodolski et al., 2008a) as well as between 
individuals (Desai et al., 2009). The composition can also be influenced by 
diet (Lubbs et al., 2009; Swanson et al., 2011; Deusch et al., 2014), antibi-
otics (Suchodolski et al., 2009; Igarashi et al., 2014), GI disease (Inness et 
al., 2007; Guard et al., 2015), age (Deusch et al., 2015), and other genetic 
and environmental factors. The intestinal microbiota has several roles in the 
maintenance of host health including defending against non-resident intes-
tinal pathogens, aiding in development of a healthy epithelium and immune 
system, and providing nutrients for the host via fermentative and metabolic 

activities (Suchodolski, 2011). It is these complex interactions among the 
microbiota, immune system, and host genetics that influence the balance 
between health and disease. This review will characterize the healthy in-
testinal microbiome, summarize methods of characterization, and discuss 
changes that occur in dogs and cats with gastrointestinal diseases.

Characterization of the Microbiota

Traditional bacterial culture methods have now been largely replaced 
by molecular tools for characterization of the complex intestinal microbiota 
(Tannock, 2005). The first of these molecular methods is next generation 
(high-throughput) sequencing of the bacterial 16S rRNA gene. This gene 
contains highly conserved sequences of nucleotide bases that are unique to 
bacteria as well as a region that contains phylogenetic information about the 
group and species level (Tannock, 2005). Using this method, we have been 
able to identify major bacterial groups in feces of healthy dogs and cats. The 
phylum Firmicutes comprised the majority of bacterial sequences in both 
dogs and cats in some studies (Ritchie et al., 2010; Handl et al., 2011). Clos-
tridia was the most predominant class of bacteria with more than 65% of se-
quences belonging to this group containing important bacterial groups such 
as Clostridium clusters XIVa and XI and Ruminococcus (Handl et al., 2011). 
Other studies identified predominant phyla including Bacteroidetes, Proteo-
bacteria, Actinobacteria, and Fusobacteria; however, relative abundances of 
these bacterial groups varied significantly between studies (Ritchie et al., 
2010; Handl et al., 2011; Garcia-Mazcorro et al., 2011; Guard et al., 2015). 
These discrepancies may be due to differences in genomic DNA extrac-
tion methods, DNA amplification protocols, and sample storage conditions. 
Handl et al. (2011) examined the operational taxonomic units (OTUs) at the 
genus level and found that only 5 of 85 OTUs identified were detected in all 
12 dogs, and 14 of 113 OTUs identified were detected in all 12 cats. This 
suggests that the intestinal microbiota is quite different between individuals. 
The intestinal microbiota also varies from one collection site in the GI tract 
to another (i.e., duodenum vs. ileum vs. feces). There is a general increase in 
diversity and total number of bacteria moving from the duodenum to the co-
lon, and aerobic or facultative anaerobic bacteria predominate in the small 
intestine while anaerobes thrive in the large intestine (Mentula et al., 2005; 
Ritchie et al., 2008; Suchodolski et al., 2008a). In dogs, Clostridiales de-
creased along the GI tract from 40% of 16S rRNA clones in the duodenum 
to only 26% in the colon (Suchodolski et al., 2008a). In cats, Clostridiales 
did not exhibit this same decline, however, Lactobacillus greatly decreased 
from the jejunum to the colon (Ritchie et al., 2008). Clostridium cluster 
IV was most abundant in the small intestine and cluster XIVa was most 
abundant in the large intestine in both dogs and cats (Ritchie et al., 2008; 
Suchodolski et al., 2008a). Clostridium clusters IV and XIVa are important 
producers of short-chain fatty acids (SCFAs) and other metabolites that are 
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beneficial to intestinal epithelium and the host immune system. While next-
generation sequencing of the 16S rRNA gene is one of the most powerful 
methods for characterization of the gut microbial communities, it is impor-
tant to note that it still has limitation for detecting low abundant bacterial 
taxa within the total community. Therefore, a combination of next-gener-
ation sequencing and quantitative PCR for specific bacterial taxa is often 
employed to characterize these low abundant bacterial groups.

Shotgun sequencing, also referred to as whole metagenome sequencing, 
uses short-sequence reads of all of the genes present and therefore provides 
functional information of the microbiome in addition to phylogenetic infor-
mation. The reads are referenced against libraries of microbial genomes to 
predict functional genes and bacterial species present (Qin et al., 2010). How-
ever, this method is fairly expensive and computationally demanding when 
compared with 16S rRNA sequencing, and therefore has been only sparsely 
applied in veterinary medicine today. To overcome this hurdle, Langille et al. 
(2013) created a computational approach that can predict the functional gene 
families based off of the 16S rRNA data with high accuracy. The program is 
called PICRUSt (Phylogenetic Investigation of Communities by Reconstruc-
tion of Unobserved States) and is available online as free software. Swanson 
et al. (2011) demonstrated that GI metagenomes are more closely related be-
tween dogs and humans followed by rodent models. Due to many of these 
primary functional gene categories relating to metabolism, this suggests that 
humans and dogs also share many metabolic microbial pathways.

An emerging approach to identify bacterial and host metabolites is untar-
geted metabolomics. Identifying these metabolites allows better correlations 
between metabolic changes within the host and microbiome alterations. Com-
monly used platforms are GC–MS, LC-MS, and nuclear magnetic resonance 
spectroscopy. These analyses are ideally performed on multiple samples from 
the same individual (e.g., serum, urine, and feces) to better understand the 

metabolic changes in different organ systems. Once metabolites of interest 
are identified in an untargeted approach, then assays can be developed to spe-
cifically target these compounds (Weckwerth, 2003). Common metabolic end 
products produced by the intestinal microbiota include lactate, ammonia, and 
SCFAs. Metabolite profiles and functional metagenomes are more similar 
between individuals than phylogenetic composition, which supports the hy-
pothesis that there is a core microbiome that exhibits functional redundancy 
(Dethlefsen et al., 2008; Turnbaugh et al., 2009).

In addition to bacteria, the GI tract is home to various other microorgan-
isms including fungi, viruses, and parasites. The complex interactions these 
organisms have with the host and bacterial microbiota are not well under-
stood. Recent studies have used next-generation sequencing with panfungal 
primers to reveal the fungal component of the microbiota in dogs and cats 
(Suchodolski et al., 2008b; Handl et al., 2011; Foster et al., 2013). Ascomy-
cota was the most abundant fungal phylum in dogs (99.62%) and was the only 
phylum found in cats (Handl et al., 2011). The fungal phyla Basidiomycota, 
Glomeromycota, and Zygomycota were also found in dogs, with Nacaseomy-
ces being the most abundant genus (76.72%) in one study (Handl et al., 2011) 
and Candida being the most abundant genus (5.2%) in another study (Foster 
et al., 2013). Saccharomyces (58.31%) and Aspergillus (11%) were the most 
abundant fungal genera found in cats (Handl et al., 2011). It is also interesting 
to note that fungal DNA was significantly more prevalent in mucosal brush 
samples than luminal samples, suggesting that some resident fungi may be 
mucosa adherent (Suchodolski et al., 2008b). Studies on the viral component 
in the GI tract of dogs and cats are limited. Swanson et al. (2011) used 454 
pyrosequencing methods on canine fecal DNA and found that 99% of the vi-
ral sequences identified in the samples could be classified as bacteriophages. 
Shotgun sequencing evaluation of dsDNA viruses in feline feces revealed 
only one order of bacteriophages, Caudovirales (Tun et al., 2012). Future 

Figure 1. Schematic diagram representing some major microbiota-associated pathways in health and disease. Commensal bacteria in a healthy state convert complex 
carbohydrates (CHO) into beneficial short-chain fatty acids (SCFAs) that provide energy for endothelial cells, increase anti-inflammatory regulatory T cells, and modulate 
intestinal motility. Commensal bacteria in the colon also drive the conversion from primary bile to secondary bile acids, and these have anti-inflammatory properties, in-
duce GLP-1 (increases insulin), and decrease, for example, sporulation of Clostridium difficile. In a diseased state, the decreased production of antimicrobial peptides and 
mucus leads to an increase in the permeability of the endothelium and the translocation of bacteria. Toll-like receptors (TLR) on macrophages and other cells recognize 
specific pathogen-associated molecular patterns, such as lipopolysaccharides in bacterial cell walls (LPS), and trigger inflammatory reactions. Macrophages phagocytize 
pathogenic microbes, which also triggers an immune response in the host that can lead to oxidative stress. Oxidative stress, in turn, can cause intestinal dysbiosis
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studies are needed to elucidate the complex interactions between host cells 
and all microbial populations of the canine and feline GI tract.

Various studies performed in dogs and cats analyzed the effects of di-
etary compositions on GI microbiota. Using qPCR methods, Lubbs et al. 
(2009) showed minor effects on the microbiota in cats fed a high-protein 
diet vs. a moderate protein diet. In contrast, Deusch et al. (2014) found 
that different protein-to-carbohydrate ratios have an impact on the mi-
crobiota of growing kittens. A high-protein/low-carbohydrate diet led to 
an increase in species richness when compared with a moderate-protein/
moderate-carbohydrate diet, and functional differences related to metab-
olism and amino acid biosynthesis were also identified between groups 
(Deusch et al., 2014). Another study looked at the effect of dietary fiber 
in dogs, comparing a low-fiber diet to one that contained 7.5% beet pulp 
(Swanson et al., 2011). The low fiber led to greater percentage of Bac-
teroidetes, Fusobacteria, and Proteobacteria and a lower percentage of 
Firmicutes and the Chlorobi group of Bacteroidetes when compared with 
the diet containing 7.5% beet pulp. However, functional groups in the 
metagenome were not significantly altered (Swanson et al., 2011).

Also, there are many other factors that influence the composition of the 
microbiota, for example, antibiotic and probiotic administration. A variety 
of antibiotics have been shown to alter the GI microbiota (Suchodolski et 
al., 2009; Igarashi et al., 2014), and while the majority of bacterial taxa re-
turn to pre-treatment state within several weeks, some remain altered for ex-
tended periods of time. For example, one study in healthy humans revealed 
that some bacterial groups failed to recover within 6 mo after treatment 
with ciprofloxacin (Dethlefsen et al., 2008). Probiotic strains are detectable 
in feces of dogs and cats during administration and can alter the intestinal 
microbiota to a limited extent, but these alterations generally revert after 
administration is stopped (Garcia-Mazcorro et al., 2011). The effect of pro-
biotics on the canine and feline microbiota are discussed in further detail 
elsewhere (Schmitz and Suchodolski, 2016). While these initial studies 
have shown that diet, probiotics, and antibiotics may impact the intestinal 
microbiota, further in-depth experiments are needed to evaluate how these 
modifications influence the microbial transcriptome and metabolome as 
well as the immunological responses of the host. Furthermore, while most 
studies analyzed only fecal samples, as they are easier to collect in a practi-
cal setting, it will be useful to also evaluate the microbiome, metabolome, 
and transcriptome in proximal parts of the GI tract to more comprehensively 
understand the effects of diet, probiotics, and antibiotics.

Roles of the Microbiota in Health

The intestinal microbiota plays a large role in maintaining the overall 
health of the host’s gastrointestinal tract. Its functions include defend-
ing against non-resident intestinal pathogens, aiding in development of a 
healthy epithelium and immune system, and providing nutrients for the host 
via fermentative and metabolic activities. After initial colonization of the in-
testinal tract in utero or shortly after birth, the microbial community evolves 
into the typical adult population over several months (Buddington, 2003). 
The commensal bacterial population provides the host with colonization re-
sistance where the resident microbes outcompete non-resident microbes for 
vital resources. This system can fail if pathogens outcompete the resident 
microbes or if certain opportunistic pathogens in the resident microbiota 
overgrow and cause an imbalance. Some examples of enteric pathogens as-
sociated with diarrhea in dogs and cats are Salmonella, Campylobacter jeju-
ni, toxigenic Clostridium perfringens, and Escherichia coli; however, these 

groups are often isolated from healthy animals as well (Marks et al., 2011). 
One type of E. coli has recently been associated with granulomatous colitis 
in boxer dogs, and it is mucosa adherent and invasive (Craven et al., 2011). 
This finding shows that resident bacteria interact closely with the host im-
mune system and suggests that colonization resistance and innate immunity 
susceptibilities may have an underlying genetic breed component.

The intestinal microbiota has a significant impact on the intestinal epi-
thelial structure, as demonstrated by several studies in animal models (Al-
Asmakh and Zadjali, 2015). Germ-free mice have changes in the intestinal 
morphology, motility, physiology, and function when compared with spe-
cific-pathogen-free and wild-type mice. Germ-free mice show a decrease 
in the small intestinal surface area, shorter ileal villi and crypts, thinner 
lamina propria, longer transit time, lower intestinal fatty acid concentra-
tions, and reduced osmolarity (Al-Asmakh and Zadjali, 2015). These find-
ings re-emphasize the importance of the intestinal microbiota in the proper 
development of the epithelial tissue structure. The microbiota also helps 
the immune system develop and function properly. Studies have shown 
that probiotic administration to dogs and cats can have immunomodula-
tory effects (Benyacoub et al., 2003; Marshall-Jones et al., 2006; Rossi et 
al., 2014). When healthy adult cats were given the probiotic Lactobacillus 
acidophilus DSM13241 (2 × 108 CFU/d) for 4.5 wk, phagocytic capacity 
was increased in the peripheral granulocytes and plasma endotoxin concen-
trations decreased (Marshall-Jones et al., 2006). Administration of probiotic 
lactic acid bacteria Enterococcus faecium SF68 (5 × 108 CFU/d) to puppies 
for 20 wk resulted in increased fecal IgA concentration, improved immune 
response to canine distemper virus vaccine, and increased proportion of 
mature B cells (Benyacoub et al., 2003). A recent in vitro study revealed 
that the probiotic Lactobacillus acidophilus LAB20 attenuated lipopolysac-
charide-induced inflammatory cytokine IL-8 secretion from enterocytes and 
strengthened the intestinal barrier (Kainulainen et al., 2015). The probiotic 
mixture VSL#3 (112 to 225 × 109 lyophilized bacteria per 10 kg per day) 
also induced immune responses in dogs with inflammatory bowel disease, 
decreasing CD3+ T cell infiltration and increasing regulatory T cell markers 
(Rossi et al., 2014). Therefore, changing the microbiota composition can 
have direct effects on animal health by influencing immune function. Future 
studies should investigate the use of probiotics as therapeutic agents for the 
management of gastrointestinal diseases in dogs and cats.

The intestinal microbiota provides nutrients for the host via fermen-
tative and metabolic activities. Complex carbohydrates generally pass 
through the small intestine undigested by the host and reach the large intes-
tine. Here, microbial fermentation creates beneficial SCFAs, which provide 
energy for endothelial cells and regulate intestinal motility, an important 
defense mechanism against adherent bacteria (Figure 1). Furthermore, SC-
FAs induce regulatory T cells, which are anti-inflammatory (Suchodolski, 
2011). Some examples of SCFA-producing bacteria are Faecalibacterium 
prausnitzii, Eubacterium rectale, Eubacterium hallii, and Ruminococcus 
bromii (Louis et al., 2010; Ze et al., 2012). Other bacterial metabolic end 
products may have direct or indirect effects on host health, but more stud-
ies are needed to elucidate these effects in dogs and cats.

Microbiota Alterations in Disease

Although the intestinal microbiota is generally associated with influ-
encing gastrointestinal diseases, it has recently been discovered that the 
microbiota has a role in many extraintestinal disorders as well. Studies in 
humans have shown that the intestinal microbiota impacts several disease 
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processes such as atopic disorders (Rutten et al., 2015), central nervous 
system disorders (Catanzaro et al., 2015), autoimmune diabetes (Dolpady 
et al., 2016), and multiple sclerosis (Wekerle, 2015). Future research in 
canine and feline models of disease will help us to understand the multi-
system role that the intestinal microbiota has in health and disease.

Short-term changes in the intestinal environment, such as in cases of 
acute diarrhea, affect the microbial composition. Dogs with acute diarrhea 
show decreased microbial diversity, with lower numbers of Bacteroide-
tes and Faecalibacterium and higher numbers of Clostridium (Guard et 
al., 2015). In this same study, fecal concentrations of propionic acid sig-
nificantly decreased in dogs with acute diarrhea, and functional genes for 
transposase enzymes and methyl-accepting chemotaxis proteins were also 
underrepresented in these dogs compared with healthy controls (Guard et 
al., 2015). Chronic enteropathy in dogs and cats is characterized by per-
sistent signs of GI disease (i.e., vomiting or diarrhea) and can be clinically 
classified as food-responsive, antibiotic-responsive, or steroid-responsive, 
depending on the response to treatment. Idiopathic inflammatory bowel 
disease (IBD) is a subset of chronic enteropathies that exhibit inflamma-
tion in the GI tract, GI symptoms with no known cause, and poor response 
to the above treatments (Simpson and Jergens, 2011). The pathogenesis of 
IBD is not well understood, but there are several hypotheses that link mi-
crobial dysbiosis, intestinal inflammatory immune response, and genetic 
predisposition as factors that influence the development of IBD (Packey 
and Sartor, 2009). Interestingly, studies performed on multiple species 
concluded that IBD is associated with decreases in, for example, Fir-
micutes, and increased gram-negative bacteria (i.e., Enterobacteriaceae; 
Simpson and Jergens, 2011). In duodenal biopsies from dogs with IBD, 
454-pyrosequencing revealed decreased proportions of Prevotellaceae, 
Clostridiales, Bacteroidaceae, and Fusobacteria when compared with 
healthy dogs (Suchodolski et al., 2012). In another study, duodenal brush 
samples indicated that dogs with IBD have a distinct microbiota with in-
creased mucosal Enterobacteriaceae and Firmicutes and decreased Bac-
teroidetes and Spirochaetes (Xenoulis et al., 2008). Fluorescence in situ 
hybridization on duodenal biopsies from cats with IBD revealed increased 
mucosal Enterobacteriaceae that correlated with changes in the intestinal 
epithelial structure and clinical signs of disease (Janeczko et al., 2008). 
Furthermore, there was an increase in pro-inflammatory cytokines IL-1, 
IL-8, and IL-12 in cats with IBD (Janeczko et al., 2008). Anti-inflamma-
tory cytokines and regulatory T cells have also been shown to decrease 
in dogs with IBD (Maeda et al., 2016). Toll-like receptors (TLR) are 
pro-inflammatory receptors in the 
innate immune sys-
tem that recognize 
molecular patterns 
associated with 
microbes (Figure 

1). Expression of TLR-2, 4, and 9 have been shown to increase in duode-
num and colon mucosa of dogs with IBD (Burgener et al., 2008). German 
shepherd dogs are anecdotally more susceptible to GI diseases. Kathrani 
et al. (2010) found single-nucleotide polymorphisms (SNPs) in TLR-4 
and TLR-5 that were significantly associated with IBD. Furthermore, 
SNPs in TLR-5 were associated with hyper-responsiveness to flagellin 
(Kathrani et al., 2012), the major protein component of bacterial flagella. 
More studies are needed to determine other potential genetic factors and 
their functional importance in the pathogenesis of canine and feline IBD.

While there are abundant studies looking at the metagenome and me-
tabolome in humans with GI disease, studies focused on dogs and cats are 
limited. It has been demonstrated in humans that functional gene changes, 
including alterations in oxidative stress pathways and decreased amino acid 
biosynthesis, are more consistent than phylogenetic changes in patients 
with IBD (Morgan et al., 2012). Similar functional changes were recently 
found in cats and dogs with chronic GI diseases (Minamoto et al., 2015; 
Suchodolski et al., 2015). Cats with diarrhea had increased functional genes 
for transcription factors, tryptophan metabolism, epithelial cell signaling, 
and glycerolipid metabolism and decreased functional capacity for biosyn-
thesis of secondary metabolites and biotin metabolism (Suchodolski et al., 
2015). Dogs with IBD also had increased functional genes for transcription 
factors and decreased genes for amino acid metabolism (Minamoto et al., 
2015). Minamoto et al. (2015) performed untargeted metabolomics analysis 
on the serum of dogs with IBD and found that several metabolites increased, 
including 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lac-
tone. Ribose and gluconic acid lactone are both involved in the pentose 
phosphate pathway, which protects the cells from oxidative stress, suggest-
ing that dogs with IBD also have increased oxidative stress (Minamoto et 
al., 2015). A preliminary study using untargeted metabolomics on feces of 
dogs with IBD showed decreased tryptophan metabolites, secondary bile 
acids, and phytosterols and increased primary bile acids when compared 
with healthy dogs (Honneffer et al., 2015). Secondary bile acids are anti-
inflammatory, increase secretion of GLP-1, which is involved in insulin up-
regulation, and decrease C. difficile sporulation, making them an important 
part of the healthy intestinal ecosystem (Figure 1) (Katsuma et al., 2005; 
Koenigsknecht et al., 2015). Conversion of primary to secondary bile acids 
involves generally two steps: deconjugation of glycine or taurine by bile salt 
hydrolase (BSH) and dehydroxylation. Commensal bacteria in the colon in-
clude dehydroxylating bacteria such as Clostridium scindens, C. hiranonis, 
C. hylemonae, and C. sordellii, as well as Lactobacilli, a major source of 

BSH (Ridlon et al., 2014). The overall objective of investigating 
the microbial and metabolic alterations would 
be to identify biomarkers for chronic GI dis-
eases and possible therapeutic treatments.

Source: DoraZett/Fotolia.com
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Summary and Conclusions

There have been many recent advances in the characterization of canine 
and feline intestinal microbiota in health and disease. Profound alterations in 
the intestinal microbiota have been found in chronic and acute gastrointesti-
nal diseases, but it is recently being discovered that the microbiota may also 
have roles in extraintestinal diseases. We are in the beginning stages of relat-
ing phylogenetic changes to functional changes and broadening our search 
for biomarkers and therapeutic agents for disease. Studies suggest that much 
of the research on the mammalian intestinal microbiota can be translational 
to other species due to a core microbiome that has conserved functional 
genes across mammals. Some limitations of the current microbiome studies 
on dogs and cats are small sample sizes and difficulties distinguishing bacte-
rial groups that have only a small amount of DNA present in the biological 
sample. Further studies are needed to elucidate the complex interactions of 
the intestinal microbiome with the host immune system and host genetics so 
that we may examine the full breadth of effects on health and disease.
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